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ABSTRACT

This paper describes mathematical models ofexploited fish stocks under the assumption that a certain
portion ofthe stock becomes available through a dynamic aggregation process. The surface tuna fishery
is used throughout as an example. The effects of aggregation on yield-effort relationships, indices of
abundance, and fishery dynamics are discussed. The predictions of the theory are notably different
from those obtained from general-production fishery models, particularly in cases where the available
substock has a finite saturation level. Possible effects include fishery "catastrophes" and lack of
significant correlation between catch-per-unit-effort statistics and stock abundance. Various man­
agement implications of the models are also discussed.
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The relationship between fishing effort, catch
rate, and stock abundance is of fundamental im­
portance to the management of commercial
fisheries. To a first approximation, it is usually
assumed that catch per unit effort (CIE) is propor­
tional to stock abundance (P), with a fixed con­
stant of proportionality (catchability coefficient),
q:

where C denotes catch per unit time andE denotes
fishing effort. By combining this relationship with
an appropriate model ofpopulation dynamics, one
obtains a dynamic fishery model which can then be
used as a basis for management policy (Schaefer
1957).

The form ofEquation (1) is predicated on certain
underlying assumptions pertaining to the fishing
process, particularly a) that fishing consists of a
random search for fish and b) that all fish in the
stock are equally likely to be captured. More pre­
cisely, by introducing an explicit stochastic model
of the fishery based upon such assumptions, one
can deduce Equation (1) for the expected catch rate
C. But such models can also be employed to inves­
tigate the consequences of alternative, and possi­
bly more realistic, assumptions. For example,

C = qEP, (1)

stochastic models of purse seine fisheries, incor­
porating detailed descriptions of the operation of
fishing vessels, have been discussed by Neyman
(1949), Pella (1969), and Pella and Psaropulos
(1975). On the other hand, the effects ofconcentra­
tion of fish and of fishing effort have been studied
by Calkins (1961), Gulland (1956), and others.

In this paper we discuss fishery models in which
the assumption ofequal availability ofall portions
of the stock is relaxed. Specifically, we are con­
cerned with fisheries that exploit aggregations of
fish; these aggregations are assumed to constitute
a dynamically changing substock of the entire
population. Although a general class of such mod­
els could be developed, we shall restrict the discus­
sion here to the case of the tuna purse seine
fisheries, in which aggregation apparently occurs
through the process of surface school formation.
Several alternative models of the interchange pro­
cess between surface and subsurface tuna sub­
populations will be presented, and the effects of
the surface fishery will be investigated for each
model. Evidence arising from studies carried out
at the Inter-American Tropical Tuna Commission
(Sharp 1978), and at the Southwest Fisheries
Center, National Marine Fisheries Service, shows
that yellowfin tuna, Thunnus albacares, captured
in surface schools in the eastern tropical Pacific
Ocean do in fact spend part of their time below the
surface. Little seems to be known, however, about
the dynamics of the interchange process; our
analysis of alternative models indicates that such
knowledge could become crucial to the manage­
ment of the fishery.
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Fisheries for various other pelagic, schooling
species, such as anchoveta, herring, and mackerel,
also appear to involve aggregative processes. Sev­
eral of these fisheries have in fact experienced
collapses which are qualitatively similar to those
predicted by our aggregation models. 4 Other
mechanisms, however, may be involved in these
fisheries, including: predation (Clark 1974); com­
petitive exclusion (Murphy 1966); increased
catchability (Fox 5

); depensation in stock­
recruitment relationships (Clark 1976). In some
cases, stocks have failed to recover following a
collapse, even when fishing has been greatly cur­
tailed (Murphy 1977). Dynamic behavior of this
kind is not consistent with any of the traditional
models employed in fishery management.

On the other hand, discontinuous behavior of
continuous nonlinear systems is a well-known
phenomenon in applied mathematics. Thus the
term "bifurcation" refers to such discontinuous
changes induced by continuous parameter shifts
in explicit mathematical models. More recently
the subject "catastrophe theory" has been de­
veloped as an abstract approach to these
phenomena (Thom 1975; Zeeman 1975; see also
the report in Science by Kolata (1977».

A discussion of catastrophe theory as it applies
in the fishery setting appears in Jones and Walters
(1976). Indeed these authors assert that "... the
tropical tuna fisheries have almost certainly
moved into a cusp region, ... where small changes
in investment policy or failure to rapidly adjust
catch quotas could lead to fishery collapse." (Jones
and Walters 1976:2832). Since no specific biologi­
cal (or technological) catastrophe-inducing
mechanism has been suggested by Jones and Wal­
ters, their assertion stands only as a plausible
conjecture-a warning that possible nonlinear
system effects ought to be investigated more fully.

In this paper we shall investigate in some detail
the interactions between the schooling behaviour
of tuna and the operation of the purse seine
fishery. Since current knowledge about the school­
ing strategy of tuna is limited, we shall construct a
variety of models in order to investigate the possi­
ble effects of and interactions with the fishery. In
particular, we shall discuss the following topics:

'Similar collapses have not occurred in tuna stocks, perhaps
because of their relative diffuseness.

'Fox, W. W., Jr. 1974. An overview of production model­
ling. UnpubJ. manuscr. Southwest Fisheries Center, Na­
tional Marine Fisheries Service, NOAA, P.O. Box 271, La Jolla,
CA 92038.
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1. yield-effort relationships,
2. indices of stock abundance,
3. fishery dynamics,
4. management implications.

The results turn out to be highly, perhaps sur­
prisingly, sensitive to the assumptions and
parameters of our models. Of particular impor­
tance is the way in which the size of surface tuna
schools depends upon the overall abundance of
tuna. Ifit is the case that school size (as unaffected
by the fishery) is relatively independent of total
tuna abundance, then our models indicate the pos­
sibility (under certain additional conditions) of a
catastrophic collapse of the tuna fishery as the
intensity offishing passes some critical level. That
such a prediction could arise from a potentially
biologically realistic tuna model was completely
unexpected at the beginning of the study, in spite
ofthe theoretical investigations mentioned above.

Another significant result of our analysis is
that, under our model assumptions, the catch­
per-unit-effort (CPUE) statistic may constitute an
extremely unreliable index of stock abundance.
The bias may be in either direction depending on
the model adopted-CPUE may severely either
underestimate or overestimate the decline in
abundance as the fishery develops, while in other
cases CPUE may quite accurately represent
abundance.

Following the description and analysis of our
various models, we shall present some simple
simulated development paths for the tuna purse
seine fishery, based upon the models. The first
simulation that we performed utilized our best
guesses as to realistic parameter values. In this
simulation the fishery experiences a catastrophic
collapse when effort is increased to 18,000 stan­
dardized vessel days per annum. The decline ofthe
tuna population itself Occurs quite gradually, but
is not reflected by any significant decline in catch
or in CPUE, until the fishery is virtually de­
stroyed. In other words, the collapse of the fishery
involves not an abrupt change in the stock, but
rather an abrupt change in the input-output rela­
tionship.

TUNA PURSE SEINE FISHERY

The commercial fishery for tuna in the eastern
tropical Pacific Ocean began in the years following
World War I, the two main species taken being
yellowfin tuna and skipjack tuna, Katsuwonus
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FIGURE I.-Annual catches ofyellowfin (YF) and skipjack (SK)
tuna in the eastern tropical Pacific Ocean, 1945-75.

Schools of tuna are normally located by visual
search, often by noting the presence offlocks ofsea
birds. After sighting and approaching a school, the
vessel attempts to capture tuna by setting its
purse seine net about the school. During a set on
porpoise schools, speedboats may be lowered into
the water to assist in concentrating the porpoise so
that the school can be encircled by the net. Of the
daylight hours spent on the fishing grounds,
perhaps 70% are spent in searching for schools and
30% on setting of nets.

According to biological observations (Sharp
1978), only a portion ofthe total tuna population is
available to the fishery, as schooled fish, at any
given time. It appears that the magnitude of this
available portion may be related to environmental
conditions, particularly the depth in the ocean of
certain thermal isoclines. Furthermore, it seems
evident that there must exist a dynamics of school
formation and exchange. The fishery interacts
with this dynamic process by removing some of the
schools. To our knowledge, the implications of
such a dynamic availability phenomenon have not
been previously investigated in detail.

Since present knowledge about the schooling
strategy of tuna is limited, we shall discuss a
coterie of submodels for the formation of schools.
The models have been chosen in an attempt to
"bracket" the possible range of schooling
strategies; a wide variety of alternative models
could obviously also be set up (see Appendix B).

We next describe a submodel for the purse seine
fishery. In order to keep the length of this paper
within bounds we discuss only a single fishery
submodel, in which vessels search at random for
randomly distributed surface schools. Finally we
introduce our submodel of tuna population
dynamics, which will be the standard Schaefer
model. In the main body of the paper we employ
the continuous-time version of the Schaefer
model, but a discrete-time version will be dis­
cussed in Appendix A.

In Appendix B we describe several more de­
tailed models pertaining to the schooling strategy
of tuna, using techniques known from chemical
kinetics. This approach yields as special cases the
two submodels described in the text proper and
also gives rise to a number of interesting new
details.

Although the background of our schooling and
fishery models is stochastic, we concern ourselves
only with expected values, so that the analysis
remains essentially deterministic. (Explicit
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pelamis. Annual catches in the between-war
period rose to a total of about 70,000 short tons.
Following World War II "there was a great up­
surge in the fishery" (Schaefer 1967:89), which has
continued to the present time, see Figure 1. The
entire period has also seen a progressive expan­
sion of the fishery into the offshore waters, con­
comitant with progressive developments in
technology. Of particular significance is the
switchover from bait boats to purse seiners, which
occurred in the early 1960's and has resulted in
substantial continuing increases in the catch of
yellowfin tuna. Much of this increase has resulted
from the offshore fishery on porpoise-associated
tuna schools.

The purse seine tuna fishery operates by locat­
ing schools of tuna a t or near the surface ofthe sea.
The main types of schools encountered are: a) non­
porpoise associated schools (pure yellowfin tuna,
pure skipjack tuna, or mixed schools) and b) por­
poise schools (yellowfin tuna only). Schools of tuna
that are not associated with porpoise are some­
times associated instead with concentrations of
floating debris ("log schools"). Management of the
yellowfin tuna fishery has been complicated by the
controversial problem of limiting the incidental
kill of porpoise, but this question will not concern
us here.
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Units 01
Item Meaning measurement

TABLE I.-Basic parameters and variables of the models. Sym.
boIs endemic to the appendices are given below.

stochastic considerations are taken up in a forth­
coming paper by Mangel.s) Two important omis­
sions from our models are: a) age structure and b)
spatial distribution of the tuna population; the
multispecies aspect is also not covered. These
omissions were dictated by our desire to concen­
trate on the novel features of our work, viz the
schooling strategy and its implications. Further
research will be required (probably based primar­
ily on simulation techniques) if more sophisti­
cated, disaggregated models are to be studied.

SCHOOL FORMATION SUBMODELS

We imagine a given number, K, of school "at­
tractors," such as porpoise schools, or collections of
floating debris. (Our models also apply to nonpor­
poise and nonlog schools provided that the ex­
change process between subsurface and surface
schools satisfies the appropriate hypotheses, see
Equations (10).) Tuna from an underlying, or
"background," population associate with these at­
tractors according to one of the submodels A or B
below; the attractors are independent of one
another and do not interchange associated tuna.
Let N denote the number of tuna present in the
background (subsurface) population. The number
of tuna in an individual generic school is denoted
by Q = Q(t). (A full list of variables and parame­
ters is given in Table 1.)

Parameters;
a

f3
O'
b

K
)(.
r
N

Variables:
o
/
N
E

y

S
S'
6
G

Appendix A;
Parameters;

T
p
9

Variables;
R
p

Appendix B;
Parameters;

'Y

S.
Variables:

T
C

schooling rate perattractor
deschooling rale
maximum equilibrium school size
catchabiUty 01 attraclors

number 01 attraetors
capture ratio
intrinsic growth rate
carrying capacity

school size
time
subsurface tuna popula/ion
fishing allor!

catch rate
surface tuna population
carrying capacity 01 S
net rate 01 transfer
growth rate

length 01 fishing season
carrying capacity
growth parameter

recru~ment

escapement

number 01 core schools per
complex

weight 01 core schools

number of core schools
number 01 complexes

day-'
day-I
tons

(standard ves­
sei day) -1

day-l

Ions

tons
days
tons

standardized
vessels

tons x (day-l)
tons
tons

tons x (day-')
tons x (day-l)

days
tons

(day-')

tons
tons

tons

(4)

Model A where Co = 1 - QO/Q*.

Tuna associate with a given attractor at a rate
aN proportional to the background population,
and dissociate at a rate f3Q proportional to the
current school size:

Model B

In this alternative submodel, we assume that
the maximum school size is a constant, Q *, which
is independent ofthe background tuna population.
Equation (2) is replaced by

Thus in model A, the equilibrium size of schools is
directly proportional to the background tuna
population. (Since we treat the number of attrac­
tors, K, as fixed, we do not discuss the possibility
that school size could also depend on K.)

(2)

(3)Q* = aN
(3 •

dQ
(it = aN - {3Q.

(The dissociated tuna return to the background
population, see Equation (15).) For fixed N the
resulting equilibrium school size Q* is given by

If Q(O) = Qo' Equation (2) has the solution (for
fixedN): dQ = aN (1 - ~ )

dt Q*
(5)

"Mangel, M. 1978. Aggregation, bifurcation, and extinc­
tion in exploited animal populations. Cent. Nav. Prof. Pap.
224. Center for Naval Analyses, 1401 Wilson Boulevard, Ar­
lington, VA 22209.

where Q * = fixed maximum school size.

Thus we now have (for fixed N)
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As will be seen in the sequel, the characteristics
of our purse seine fishery model are severely
inflenced by the choice of the schooling submodel
A or B. Which of these submodels more accurately
reflects the actual schooling strategy of tuna is a
question we are not qualified to answer. 7 It may be
the case that neither extreme (school size Q*
strictly proportional to tuna abundance N in sub­
model A, and Q * strictly independent ofN in sub­
model B) is realistic. For example, school size may
saturate for large N, but exhibit density depen­
dence at low N, giving rise to a combination of
models A and B. Submodels involving more gen­
eral links between Q* and N could easily be con­
structed, but we will not attempt to work through
the details here. A more general class of schooling
submodels is discussed in detail in Appendix B.

Let us remark here that models A and B assume
in effect a uniformly distributed "background"
tuna population. The models discussed in Appen­
dix B assume instead that the background popula­
tion consists of "core" schools; according to Sharp
(1978) the latter assumption is more realistic. In
certain cases the core-school models reduce to the
models A and B described above.

k = At =bEKt.

alA = bE,

(7)

(8)A = bE K.

Hence

The average number of attractors located by the
fleet in time t is

where E = effort
b = a constant.

If searching effort is properly standardized, we
will have

where A = (aIA)K
a = area searched per day
A = total area of fishing ground
K = number of school attractors.

Thus the total catch rate of tuna, Y, is given by

(6)Q(t) = Q* - (Q* - QO)e-aNtIQ*.

where Xo = capture ratio (average fraction cap­
tured when a school is encounter­
ed).

LetS(t) denote the total number of tuna present
at time t in surface schools: S = KQ. Our model
then implies that

where S* = KQ* represents the total "carrying
capacity" of the surface school attractors. (Note
that, replacing aKN by pN = flow rate from sub­
surface to surface populations, we could simply
adopt Equation (10) as the basic hypothesis of our
model, eliminating any particular assumption re­
garding the attractive mechanism for surface
schools.)

Let us assume for the moment that an equilib­
rium is achieved rapidly in the surface fishery,
relative to adjustments in the underlying popula­
tioll N. (The dynamics of the underlying popula-
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MODEL OF
THE PURSE SEINE FISHERY

We shall use a simple Poisson model to describe
the process whereby the fishing fleet searches for
schools of tuna. The hypotheses underlying this
model are well known (see, e.g., Ludwig 1974) and
will not be specified here. Let us note, however,
that our model pertains to a single type of school
(e.g., porpoise school, log school); a more refined
model might allow for a random intermingling of
school types. A nonrandom distribution of school
types, on the other hand, would lead to the as yet
unsolved problem of attributing allocation of ef­
fort by fishing vessels.

The probability that the fishing fleet locates
exactlyK school attractors with the expenditure of
t days of searching effort, is given by

7Broadhead and Orange (1960) imply that Q* is nearly con­
stant, although it may in some cases be slightly density depen­
dent. However, for skipjack tuna, in the eastern Pacific, school
size and population size as indexed by CPUE are highly corre­
lated (but the two estimates are not independent). J. Joseph,
Director oflnvestigations, Inter-American Tropical Tuna Com­
mission, La Jolla, CA 94720, pers. commun. July 1978.

Y = bEKxoQ

dS lCl'KN - (JS - bXoES

di = cxKN(1 - S/S*) - bXoES

(9)

(Model A)
(10)

(Model B)



tion will be modeled below.) Settingd81dt = 0, we
obtain the following "catch equations":
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for both submodels. For submodel B we also have
(for fixed E)

bXoaKEN

{3 + bXoE (Model A)

lim Y = bXoKQ*E
N-+oo

(Model B). (14)

These equations appear not to be of a standard
form, as encountered either in ecology (where YIN
would be termed the "functional response," see
Fujii et al. ), or in economics (where Y would be
termed the "production function" of the fishery,
see Clark 1976, sec. 7.6), or in the fisheries litera­
ture (Paloheimo and Dickie 1964; Rothschild
1977). This unfamiliarity is perhaps to be expected
since, as far as we know, the peculiar "skimming"
process of the purse seine fishery has not previ­
ously been modeled. Equations (10) are however
closely analogous to the Michaelis-Menten equa­
tion of enzyme kinetics (White et al. 1973) as
might be expected from the observation that the
attractors serve to "catalyze" the purse seine
fishery, see Appendix B.

Regarding the catch Equations (11), let us ob­
serve that both submodels exhibit a saturation
effect with respect to fishing efl'ortE, whereas only
submodel B exhibits a saturation effect with re­
spect to tuna abundanceN. For a fixed background
population level N, the catch rate Y bears an
asymptotic relationship with fishing effortE. For
small E we have, from Equations (11):

The net rate of transfer, 8, is obtained from Equa­
tions (2) and (5);

As our submodel of population dynamics of the
subsurface tuna population, we adopt the familiar
Schaefer logistic model (Schaefer 1957):

Our dynamic models of the surface tuna fishery
then consist of the simultaneous system of Equa­
tions (10) and (15). For convenience we rewrite the
two systems as follows:

(15)

(16)
(Model A)

(Model B).

dN
- = rN(I-N/N)-8
dt

intrinsic growth rate
environmental carrying capacity
net rate of transfer to the surface pop­
ulation.

FISHERY DYNAMICS

{

aNK - f3S
(J-

aNK(1 - 818*)

Model A: ~~ = aKN - (3S - bXoES j
dN (17)
- = G(N) - (aKN - (3S)
dt

where r
N
8

(11)

(Model B) .

bXoaKQ*EN

aN + bXoQ*E

Y

"Fujii, K., P. M. Mace, and C. S. Holling. 1978. A simple
generalized model ofattack by predator. Unpubl. manuscr., 39
p. University of British Columbia, Institute of Animal Re­
source Ecology, Vancouver, B.C., Canada V6T lW5.

Since Q * = aNIf3 in Model A, these expressions are
in fact the same for the two submodels, and concur
with the standard Schaefer fishery production
function. For large E we have

lim Y = aNK = Y 00

E-+oo

Although the difference between these two
models may appear minor, their qualitative be­
havior turns out to be quite dissimilar. Their be­
havior is also quite different from the standard
Schaefer model (Schaefer 1957). As indicated by
results discussed in the appendices, however, the
qualitative behavior of the above models seems to
be characteristic of a wide variety of alternative

(19)

(18)

where G(N) = rN(l - N!N).

dS
Model B: ill = aKN(I-S/S*) -bXoESj

dN
dt = G(N) -aKN(l-S/S*)

(12)

(13)

(Model A)

(Model B) .~
bxoaNK E

Y ~ {3

bXoQ*KE
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models of both population dynamics and the
school-formation process. We next discuss the be­
havior of our models in detail.

Model A

Figure 2(a) and (b) show the system of solution
tr~ectories (N(t), 8(t)) for the Equation system
(17), for the two cases

In these Figures, the effect of an increase in the
effort parameter E is to rotate the isoclineS = 0 in
a clockwise direction, thus decreasing both popu­
lation levels N 00 and 8

00
, The corresponding yield­

effort curves are shown in Figure 3(a) and (b) re­
spectively.

The shape of these yield curves is easily
explained. Note from Equations (16) that the con­
stant

oJ( < rand aK > r p = aK

(a)aK<r
o
...J
w

>-

represents the maximum net rate at which the
subsurface population N aggregates to the sur­
face; this may be referred to as the "intrinsic
aggregation rate" (or "intrinsic schooling rate" in
the present model). If the intrinsic aggregation
rate p is less than the intrinsic growth rate r (see
Figures 2(a), 3(a», then the population cannot be
exhausted by the surface fishery; in this case N ....
IV> 0 and Y .... }T > 0 as effortE .... 00. (Figure 3(a)
shows yield increasing to a maximum level and
then declining as effort increases. This situation
arises if IV < N/2. i.e., if p > r/2; otherwise, Y
simply increases to an asymptotic value }T.)

5=0

N=O

5 =0 >-

(a) oK< r

riJ=O

respectively. The system has a unique stable
equilibrium at the point (N00,8 00); the correspond­
ing sustained yield from the fishery is given by

en

z
0

i=
«
...J
::>
Q.
0
Q.

w
U
«
LL
0::
::>
en SeD

(b) oK > r

SUBSURFACE POPULATION (N)

FIGURE 2.-Trajectory diagram for model A: a stable equilib­
rium exists at the point (Noo ' 8

00
), Case (a): intrinsic schooling

rate less than intrinsic growth rate; population cannot be de­
pleted below N by surface fishery. Case (b): intrinsic schooling
rate greater than intrinsic growth rate; population can theoreti­
cally be fished to arbitrarily low levels (see also Figure 3).

(b)aK>r

EFFORT (E)

FIGURE 3.-Equilibrium yield-effort curves for model A. Case
(a): intrinsic schooling rate less than intrinsic growth rate; yield
approaches a positive asymptotic value as effort approaches
infinity. Case (b): intrinsic schooling rate greater than intrinsic
growth rate; yield approaches zero at finite effort level.
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Na>

(b)aK>r

SUBSURFACE POPULATION (N)

FIGURE 4.-Tr~ectory diagrams for model B: a stable equilib­
rium exists at point (N"" 8",); in diagram (b) an unstable equilib­
rium also exists for small E, but both equilibria disappear for
large E. Case (a): intrinsic schooling rate less than intrinsic
growth rate; population cannot be depleted below Ii< by surface
fishery. Case (b): intrinsic schooling rate greater than intrinsic
growth rate population can theoretecally be shed to arbitrarily
low levels; the transition from N = N;;; to N = 0 is "catastrophic";
see also text and Figure 5(b).

multivalued for this case. Model B exhibits an
explicit mathematical "catastrophe."

The significance of multivalued yield-effort
curves for fishery management has been discussed
by Clark (1974, 1976); see also Anderson (1977).
As effort E expands from a low level, the catch
follows the upper stable branch (Figure 5(b», pos­
sibly with some lag. But onceE exceeds the critical
level E e , sustainable yield drops discontinuously
to zero and the fish population goes into a steady
decline. Subsequent decreases in effort do not
necessarily result in recovery of the fishery, which
may become "trapped" at a position of low abun­
dance. This behavior is characteristic of the
"catastrophe" situation (here the so-called "fold"
catastrophe (Zeeman 1975». In general, once a
catastrophic jump has occurred, a large-scale
change in the control variable (effort) is required

S:O(Smoll E)

s:O

(0) aK< r

_------- S=O(Lorge E)-----
///-

Sa>

-
Vl

z
o
....
~

...J
:J
a.
o
a.

w
u
~
lL
ct:

~ Sa>

Model B

On the other hand, if p > r (Figures 2(b), 3(b))
then exhaustion is possible at sufficiently high
levels ofeffort. This case is similar to the Schaefer
model.

For model A, CPUE is a seriously biased index of
total stock abundance. The instantaneous CPUE
is, of course, simply an index of abundance for the
surface population. Sustained CPUE progres­
sively overestimates the decline in abundance at
high levels ofeffort. Conversely, particularly if the
aggregation rate is large, CPUE may underesti­
mate the decline in abundance at intermediate
levels ofeffort. It is clear in general that no simple
transformation of the CPUE index can provide an
unbiased estimator of abundance, for this model.
Any fishery exploiting a substock of a biological
population necessarily provides only partial in­
formation concerning total abundance; in the
event that the fishery itself affects the relation­
ship between the substocks, the interpretation ofa
time series of catch-effort data becomes extremely
difficult.

To summarize, if the present model realistically
represents the process of aggregation (via surface
schooling) of tuna, then CPUE data may ulti­
mately overestimate the decline in abundance of
tuna. Management policy based on such data may
then be unduly restrictive. The situation may be
very different, however, if model B is the more
realistic representation. We now turn to this case.

The solution trajectories of Equations (18) are
illustrated in Figure 4(a) and (b), again corres­
ponding to the cases aK < rand aK > r respec­
tively. The corresponding yield-effort curves are
shown in Figure 5.

In case (a), aK < r, the system has a unique
stable equilibrium (N "" S,,), As in model A, we
haveN", -+N >OasE -+ + 00. The yield-effort curve
for this case has the same shape as for model A.

A new phenomenon arises, however, in the case
that aK > r. For small E (see Figure 4(b» there
now exist two stable equilibria, at (N"" S,,) and at
(0,0), separated by a point ofunstable equilibrium.
AsE increases, the stable and unstable equilibria
coalesce and then disappear, leaving only the sta­
ble equilibrium at (0,0). In mathematical ter­
minology, the Equation system (18) undergoes a
"bifurcation" at the critical effort level E = E e

where the two equilibria coalesce. The graph of
systainable yield vs. effort (Figure 5(b» becomes
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(b)aK>r

EFFORT (E)

EFFORT(El

0-. ....
.....,

" I...... .......----...-

POPULATION (N)

FIGURE G.-Catastrophic surface (I) corresponding to model
B: This surface describes the eQuilibrium population level (N)
as a function ofeffort (E) and intrinsic schooling rate (uK). Path I
represents the development of the fishery, as effort increases, in
the case that uK < r, while Path II corresponds to the case uK>
r. In the latter case the fishery experiences a catastrophic col­
lapse at point P.

>-

(o)aK<r

>-

o
.J
W

FIGURE 5.-Equilibrium yield-effort curves for model B. Case
(a): intrinsic schooling rate less than intrinsic growth rate; yield
approaches a positive asymptotic value as effort approaches
infinity. Case (b): intrinsic schooling rate greater than intrinsic
growth rate; yield undergoes a catastrophic transition when
effort exceeds critical level Ec.

in order to return the system to the original stable
equilibrium.

The behavior of our model (submodel B) can be
described in terms of Figure 6, in which the hori­
zontal plane represents the "control space," with
effortE as the basic control and intrinsic schooling
rate cxK as a parameter (which in some cases
might also be subject to manipulation, or to
stochastic variation). The vertical axis represents
subsurface stock size N. The surface I is the locus
of equilibrium solutions for our model.

Two possible paths for the development of the
fishery are also shown in Figure 6. (Simulated
versions of these paths will be presented below.)
Path I, corresponding to Figure 5(a), occurs if cxK
< r; here there is a steady decline in the equilib­
rium population levelN = N as the effort parame­
ter increases. (If E varies rapidly over time, then
equilibrium conditions will not prevail, and the
actual development path will diverge from Path I
lying on I. Figure 6 is still useful for understand­
ing the dynamics in this case, however.)

Path II, with cxK > r, behaves similarly to Path I

for small levels of effort, but then suddenly falls
over the "edge" of the catastrophe surface I, at
pointP. (Notice that for OIK > r the surface I folds
under itself, the upper sheet N = N and the lower
sheet N = 0 being stable equilibria, while the
middle sheet N = Nt is unstable. This surface
shape is the typical "cusp" catastrophe of Thorn
1975.)

The management implications ofthe theory will
be discussed later; the question of robustness of
the models will be taken up in the appendices.

Figure 6 stresses the significance ofthe parame­
ter p = aK for the interactive dynamics of aggre­
gation and fishing. For tuna, p may be age­
dependent, as suggested by the differences in age
distribution between longline and purse seine
catches. Also, as noted previously, p may vary over
time and space as a result of environmental gra­
dients. The theoretical consequences of such com­
plexities have yet to be investigated (Mangel see
footnote 6).

A "cusp" catastrophe surface similar to that de­
picted in Figure 6 can also be used to describe the
response of the tuna fishery to simultaneous
exploitation of the surface schools and the subsur­
face (background) population. If a given level of
fishing mortality fs is applied to the subsurface
population, the effect will be to replace our
dynamic Equation (15) by
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cxK > r - C

Thus the net biological growth rate becomes r - f.
and the condition for catastrophic behavior in
submodel B becomes

If we now consider effort E in the surface fishery
and mortality f, in the subsurface fishery as con­
trol variables (now assuming aK = constant), it is
clear that the surface of equilibrium N-values has
the same nature as shown in Figure 6. Thus while
the surface fishery might be "subcatastrophic" in
the absence of any subsurface fishery, the de­
velopment of the latter might transform the sys­
tem into a catastrophic region.

One further possibility is worth noting. As re­
marked earlier, the schooling behavior of tuna
may be influenced by environmental factors, par­
ticularly the depth of certain thermal isoclines. If
so, the system might switch randomly between

dN

dl
N

rN(1 - -=) -{sN - 0
N

r N
(r-{)N (1---)-0

S r-f.N·
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catastrophic and noncatastrophic states. Under
these circumstances the fishery might exist for
sometime at a level of stable sustained yield, but
could suffer a catastrophic collapse induced by un­
usual, or unusually protracted environmental
conditions.

The practical importance ofthese possibilities is
increased by the fact that CPUE is likely severely
to misrepresent the decline in abundance of the
tuna population. In the first simulation reported
below, for example (Figure 7), CPUE falls by only
2Qfk even though the tuna population declines by
over 99'7r,

A SIMULATED CATASTROPHE

Figures 7 and 8 show the outcome of two simula­
tions based on submodel B. (These simulations
employed the discrete-time version of the
population-dynamics submodel, as described in
Appendix A. Qualitatively the results are the
same as for the continuous-time model.) The fol­
lowing parameter values were utilized:

K 5,000 attractors
Xo 0.5

EFFORT (SDF)

(/)

w 852,000

~ I
::> 24.7
a

~ I
<l
..J
::>
::;;;

Vi

CATCH(TONSJ
p--.o.----o--o----o-~

CPUE (TONS/SDF)

ESCAPE M ENT ( TON S)

o '---'-----'--'----1.~-L.--.L__.L.._l_-L-._L_.L-._'___
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16

YEAR

FIGURE 7.-Simulation results: model B, "catastrophic" case. Effort (measured in
standardized days fishing (SDF» is increased at years 1, 5, and 9. The final effort level
produces a catastrophic but gradual decline in the tuna population, which is not "picked
up" by the catch-per.unit·effort (epUE) index until the population has been essentially
eliminated. (Scales for the four curves are linear but not related; see initial values
shown.)
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EFFORT(SDF)

FIGURE 8.-Simulaion results: Model
B, noncatastrophic case. In this case,
CPUE (catch per unit effort) seriously
overestimates the decline in tuna abun­
dance. SDF = standardized days
fishing.
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Q* = 50 tons
b = 2 X 10-4 per vessel day

rS!. 1.5 per annum
N = 106 tons.

In the first simulation (Figure 7) we set Q = 10-5,

implying an intrinsic schooling rate of 5% per day.
Since this is well in excess of the intrinsic growth
rate of0,11% per day, a catastrophe is observed. In
the second simulation (Figure 8) we set Q = 1.5 x
10 -7, implying an intrinsic schooling rate of
0.075% per day, which is below the intrinsic
growth rate.

In Figure 7, effort is fixed at 6,000 vessel days for
years 1-4, then 12,000 vessel days for years 5-8,
and finally 18,000 vessel days for all later years.
The escapement population stabilizes at about
890,000 tons by year 4, and stabilizes again at
about 735,000 tons by year 8. However in years
9-17 the effort level is above E" ~ 15,000 vessel
days, and the population is steadily reduced, ulti­
mately to a level <100 tons. Although the popula­
hon decline itself occurs gradually, neither catch
nor CPUE shows any marked decline until the
tuna population has crashed. For example, the
decline in catch (and CPUE) in year 14 is 2.5%
relative to the level for year 1, and in year 15 is
5.4% relative to the same level. Even in year 16,
when the tuna population is virtually destroyed,
the catch (and CPUE) falls by only 20%.

The same effort profile was used in the simula­
tion shown in Figure 8, except for an additional

increase in effort at year 12. In this simulation,
CPUE declines significantly, but the population
level is only slightly reduced. The biological ex­
planation lies in the low rate of schooling in com­
parison with the first simulation. Because of this
low schooling rate, increased effort mainly has the
effect of reducing the surface population, and (at
the levels shown here) has little effect on the sub­
surface population. This also explains why CPUE
is much lower, at any fixed E, than in the first
simulation.

Finally, Figure 9 shows the results of a simula­
tion based on submodel A, using the same parame­
ter values as for Figure 7. This simulation indi­
cates that, as expected, submodel A behaves quite
similarly to traditional fishery models.

MANAGEMENT IMPLICATIONS

The models described above, and in the appen­
dices, indicate that traditional methods of fishery
management may be inappropriate in cases where
aggregation processes significantly affect the
fishery. On the one hand, such processes may be
the source of bias in CPUE indices of stock abun­
dance. On the other hand, these processes may
also lead to a catastrophic relationship between
fishing effort and sustainable yield. The latter
situation will be especially serious in the event
that CPUE underestimates declines in abun­
dance.

In addressing the management implications of
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EffORT (SOF)
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FIGURE 9.-Simulation results: Model
A. The behavior of the model is similar to
that of traditional fishery models. SDF
= standardized days fishing; CPUE
catch per unit effort.
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these theoretical results, for a particular fishery,
we face two main problems. First, what is the
likelihood that the fishery in question does involve
an aggregation process, and ifso, that catastrophic
conditions may prevail? (We remark again that
catastrophic conditions may be the result of pro­
cesses other than aggregation.) Secondly, given
that such conditions may exist, what are the im­
plications for management policy?

If an aggregation process is known to exist, our
models suggest that the next question that ought
to be addressed is whether aggregation is density
dependent, and ifso, to what extent it depends on
population abundance? Also, the rate parameters
of the process should be determined. Unfortu­
nately this information may be extremely difficult
to obtain, and the question arises whether infer­
ences can be drawn from data supplied by the
fishery, such as catch-effort data, school size, den­
sity of schools, size composition of catches, and so
on.

For example, if aggregation is density depen­
dent, then the size of the aggregated (surface)
population will decrease with the size of the re­
sidual (subsurface) population. For the case of
tuna, either the number or the size of schools (or
both) should decrease as the fishery develops. But
the converse implication cannot be made: school
size and/or number may decrease merely because
the surface population is reduced by fishing pres­
sure. Unless a direct, independent abundance es­
timate of the subsurface population is available,
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the interpretation ofsuch fishery data may remain
ambiguous.9

The possibility that aggregation may lead to
catastrophic yield-effort relationships lends a
sense of urgency to the question of achieving a
fuller understanding of the dynamics of the aggre­
gation process. But whenever such catastrophic
relationships seem possible, for whatever reason,
a conservative approach to management appears
appropriate. In view of the uncertainties involved,
quotas should probably be established at a level
lower than the estimated maximum sustainable
yield. Furthermore, since depletion may neverthe­
less occur unexpectedly, emphasis should be
placed on achieving a high degree of controllabil­
ity of the fishery. To a certain extent this necessity
has been recognized by the Inter-American Tropi­
cal Tuna Commission, the Director of Investiga­
tions now being empowered to close the yellowfin
tuna fishery in the event of a sharp decline in
CPUE. However, if the decline were truly "catas­
trophic," more drastic measures, such as a
moratorium of some duration, might become
necessary, Although the possibility may seem re­
mote at present, we feel that further attention

9Various alternative indicators of depletion, involving size
composition of the catch and the results of cohort analysis, are in
fact employed by the Tuna Commission and have demonstrated
no severe change that can be attributed to the fishery. The
validity ofsuch indicators should not be affected by the presence
of an aggregation process, but we have not attempted to extend
our model to include cohort structure.
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needs to be given to these problems. Experience
gained from other fishery failures suggests that
control may be extremely difficult to achieve un­
less expansion ofthe fishing industry is kept under
control. For domestic fisheries operating within
200-mi zones, such control is now a possibility. For
international pelagic fisheries, such as the tropi­
cal tuna fisheries, however, the problem of entry
limitation remains unresolved.
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APPENDIX A

(CE = constant <1). (A3)

(A6)

ifgCE > 1

if gCE ~ 1.
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If, for example, G(P) is quadratic:

Exhaustion of the stock by the surface fishery is
thus possible if and only if

the equilibrium escapement level px is easily cal­
culated:

(b)aKT>cr

ESCAPEMENT (P)

(A2)

(All

(A4)limE -+ IX C E = exp (-cxKT),

N(O) = R, S(O) = cxKR/~

dS }dt cxKN - {3S -bXoES
O~t~T

dNdt = -(cxKN-{3S)

where R denotes recruitment prior to the fishing
season, and T denotes the length of the fishing
season. In Equation (A2) we also assume, for
simplicity, that the surface population S reaches
equilibrium with N before the fishing season be­
gins.

LetP = N(T) denote escapement at the close of
the fishing season. From the linearity of Equa­
tions (AI) it follows that P is a linear function of
R = NW):

The purpose of these appendices is to test the
robustness of our models, by introducing alterna­
tive submodels for population dynamics (Appen­
dix A) and for the schooling process (Appendix B).
In this appendix we replace the continuous-time
Schaefer model by a discrete-time stock­
recruitment model. We postulate a fishing season
of given length, during which the stock is fished
down, followed by an interim season which results
in the replenishment of the stock, The purpose of
this exercise is not particularly to provide a more
realistic model of tuna population dynamics, but
simply to enquire whether our main results are
independent of the type of model employed, (See
Clark 1976, chapter 7, for a general discussion of
models of the sort considered here.)

Our alternative Model A is governed by the
equations

Clearly CE is a decreasing function ofE; it is easily
seen that

IfG(P) now denotes the stock-recruitment func­
tion, the coupling between successive years is
given by the equations

R",I

P,,>
(A5)

FIGURE 1O.-Fishery dynamics for the discrete-time models;
schooling model B. G = net population growth curve; Y = catch
curve; Yx = limiting position ofY; p. = population equilibrium
for given Y. Case (a): intrinsic schooling rate less than intrinsic
growth rate; escapement population cannot be reduced below
level P by surface fishery. Case (b): intrinsic schooling rate
greater than intrinsic growth rate: population can be fished to
arbitrarily low levels; P+ denotes an unstable equilibrium. (The
corresponding yield-effort curve is similar to Figure 5(b).)

330



CLARK and MANGEL: AGGREGATION AND FISHERY DYNAMICS

exp (cxKT) > g,

i.e., if and only if the intrinsic schooling rate (over
the duration of the fishing season) exceeds the
intrinsic growth rate.

It is also clear that the yield-effort curves for
this model have the same appearance as in Figure
3. Hence the behavior of the two models is closely
analogous; bifurcations do not arise.

The discrete-time version of model B is obtained
by replacing the expression (cxKN - j3S) in Equa­
tion (All by cxKN(1 - SIS*). This gives rise to a
nonlinear escapement-recuitment relationship

It can be shown (we omit details) that

1imu+ a 'lJE ' (R) = exp (-cxKT)

limE + ~ '-IfE (R) = exp (-cxKT) . R

limR+~ (R-'lJE(R)) = bXoS*TE.

The resulting dynamics can be described in

terms of Figure 10. If cxKT < fT = lng the model is
noncatastrophic (Figure 10(a)), having a single
equilibrium P* (escapement) which approaches
P > 0 as E .... +x. (If g > 2 the equilibrium at p*
may be unstable, even "chaotic," for small E (May
1974), but this possibility will not concern us
here.) But if cxKT > fT a second, unstable, equilib­
riumP t emerges, and a bifurcation occurs at some
critical effort level E = E,.

To summarize, this appendix has demonstrated
that the qualitative predictions of our schooling
strategy models are independent ofthe basic popu­
lation dynamics of the tuna population. Although
we have explicitly established this fact only for
two specific models, it should be clear that the
theory will remain valid for a large variety of
other models, including alternative forms of the
growth and stock-recruitment functions and in­
cluding delayed-recruitment models as well as
cohort models. In all cases, the nature of yield­
effort curves will depend critically upon a) the
relationship between intrinsic schooling rate and
biotic potential and b) the schooling strategy of
tuna to the extent that school size is sensitive to
the total tuna population.

APPENDIX B

where No is the carrying capacity of n, in terms of
biomass of tuna. LetSo denote the weight ofa core
school. Then we have

where T(t) = NU)/So is the number of core schools
attimet.

A model in which the tuna-attractor complex is
formed by one collision between y tuna schools and
one attractor is first analyzed. Submodel A of the
paper is a special case of this model. We show that

We shall not consider the mechanism by which
the core tuna schools are formed. Whenever it is
necessary for the analysis, we shall assume that
the number of core schools has a logistic growth
function. This assumption is derived by firstly as­
suming that the biomass of tuna, N(t), has a logis­
tic growth function. Namely, ifno fishing occurred
and no complexes formed:

dNdl = rN (I-NINo) (Bll

(82)rT(I- TITo )
dT
dt

In this appendix, we present two detailed, kinetic
models of the schooling behavior of tuna and
tuna-porpoise complex formation. The models are
more general that either model A or model B,
which are in fact special cases of the models de­
veloped in this appendix. Since our basic assump­
tions are quite different from those used in the
body of the paper, it is interesting that equivalent
results can be obtained, at least in special cases.

The models are based on the following assump­
tion: in some large area of ocean, n, there are T(t)
core tuna schools and KU) "attractors" (porpoise
schools or logs) at time t. We assume that the core
schools move independently of each other and that
the motion is random.

We first assume that when an attractor and y (y
~ 1) tuna schools "collide" (i.e., come within some
critical distance), a tuna-attractor complex is
formed. Let CU) denote the number of tuna­
attractor complexes at time t. The fishery is as­
sumed to fish only on these complexes. We shall
postulate different mechanisms of complex forma­
tion and analyze the resulting kinetic equations.
The kinetic equations are derived assuming a law
of "mass action" similar to the one used in chemi­
cal kinetics (Moore 1972).
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a
K + 'YT=~~= C.

a -
P = k- . T = kT.Q .

Equation (B3) indicates that y schools must be
present for a complex to form. In particular, if y >
1 this model does not allow for the formation of
"partial" complexes, with fewer than y tuna
schools in the complex. It is clear that this assump­
tion is restrictive; later we relax it and allow for
complexes with 1,2, ... ,y tuna schools.

The kinetic equations corresponding to Equa­
tions (B3) and (B4) are

The rate constants a, f3 measure the association
and dissociation rates of the complex. The com­
plexes are fished at a rate bE with capture ratio Xu:

Xo bE
C - K + harvest of'Y schools. (84)

in Equations (85) and (86) gT andgK are the tuna
and attractor growth functions, respectively (gK =

o for logs).
The term proportional to T Yarises in the follow­

ing way. Consider a small area of ocean, a. The
probability, p, that a tuna school is in a should be
proportional to aiD and to T:

If a complex containing y tuna schools is to form, y
schools must be in a. Since the tuna schools move
independently and randomly, the probability of
finding y schools in a is proportional to p Y = h"lTY.

(A more precise analysis would lead to hT(T - 1)
(T - 2) ... (T - y + 1) instead ofhT Y

, since once a
school is in a specified area of ocean, there remain
T - 1 schools to be distributed over the ocean.
Once the location oftwo schools has been specified,
there remain T - 2 schools, etc. When T is large,
as we are assuming, kT Y is a good approximation
to the exact expression.)

The steady-state number of complexes is deter­
mined by setting C = O. We obtain

. aKT Y
C=---,-----­

~ + bEXo .

In this model we assume that y tuna schools
collide, at once, with one attractor to form a com­
plex:
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Single-Step Collision Model

the harvest rate is a nonlinear function of effort
and saturates asE -. x. Consequently YIE is not a
valid biomass estimate. We discuss other possible
biomass indices, the behavior ofT(t, E) as a func­
tion of effort and the sensitivity of the results to
the parameters which appear in the kinetic equa­
tions.

Next, a multistep complex formation process is
considered. A two-step model is analyzed in full
detail. Submodel B is contained as a special case.
In addition to exhibiting all of the features of the
one-step model a multistep mechanism may lead
to "catastrophic" behavior. The catastrophic be­
havior was not built into the model but arises
naturally from the dynamics.

The models presented in this appendix (particu­
larly the multistep model) are based on what ap­
pear to be reasonable assumptions about the
schooling behavior of tuna and formation of the
complexes.

The ultimate behavior of the system (fishery +
tuna + porpoises) does not appear to be an artifact
of the models, but a result of the basic assumptions
that the tuna form into schools and that the fisHery
seeks tuna schools associated with attractors. In
fact, Thom's (1975) theorem on the structural sta­
bility (robustness) ofunfoldings asserts that small
modifications ofour models will not alter the qual­
itative behavior.

The analysis of discrete-time versions of our
models is relatively intractable. Numerical
studies are underway. We do not expect the results
will be qualitatively different from the
continuous-time results. The analysis presented
in Appendix A supports this expectation.

We have not included spatial effects (e.g., diffu­
sion) in our kinetic equations. The addition of dif­
fusion greatly complicates the analysis of the
kinetic equations. However, preliminary work
based on the recent theory of Aronson and Wein­
berger (1975) has been carried out, treating the
kinetic equations with spatial dependence. We ex­
pect that if diffusion is added to the models in this
appendix, the transitions between high and low
tuna steady states may occur at effort levels lower
than those predicted by the models without diffu­
sion.
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The tuna level is at the natural steady state, be­
cause tuna are removed from the complexes as
quickly as they enter the complexes.

AsE increases further,{(E,y) -+foo' wherefoo = 1
is the limit as E -+ 00 of f(E ,y). Equation (B14)
becomes

a K TY f (E. y)

NUMBER OF CORE SCHOOLS (T)

The graphical solution of Equation (BI6) is

case here. We shall briefly consider the case of y :;;.
2. This case may be of little interest in the actual
tuna fishery, but there may be other instances
where y :;;. 2 is interesting (e.g., animal popula­
tions).

When E is small, so that bEXo < (3(y - ll, the
coefficient f(E ,y) is negative. Equation (BI4) has a
graphical solution sketched in Figure 11. The
steady-state tuna level, Ts , is greater than the
"natural level" To, but this is explained as follows.
At any time there are a certain number of tuna
schools bound in the complexes. The remaining,
uncomplexed, tuna achieve the steady state level
To. The total number of tuna, however, is To plus
the number in the complexes.

AsE increases, a level ofeffort is reached so that
f(E,y) = O. At this point, Equation (BI4) becomes

(BI3)

(814)

(B11)

(BI0)

(812)

bEXocxKTSoY = -'-=-----"-
{3 + bEXo

cxKT~ [bExo - iJ('Y -1)]
iJ + bEXo

- cxKT~ f(E;y).

Ci.KT~
o = gT - cxKT'Y + (3'Y [iJ + bEXo ]

or

which we assume has a solutionK =K". (Note that
this model does not allow for the loss of attractors
due to fishing.) The steady-state tuna population
satisfies

The instantaneous rate of harvest, Y, is the prod­
uct of (the number of complexes) x (the encounter
rate bE) x (the capture ratio Xo) x (the number of
schools per complex). Thus

which is, with the exception of So, identical to
Equation (l1A). The additional factor So arises
here because we are considering numbers of tuna
schools, whereas model A of the main part works
directly with tuna biomass.

Model A is thus a subcase of the model in this
section. Hence, we have provided a second physi­
cal picture for the mechanism which generates
model A used in the paper.

Equation (811) exhibits a saturation as E in­
creases and is similar to results obtained in the
Michaelis-Menten approach to enzyme kinetics
(White et al. 1973). This is not unexpected, since
our models are based on the assumption that the
attractors "catalyze" the fishery.

The tuna and attractor steady states are deter­
mined from the steady-state versions of Equations
(85) and (B6). Adding Equations (86) and (B7)
gives

If y = 1, Equation (BI0) becomes

Since the case in which y = 1 was analyzed in
the body of the paper, we shall not consider that

FIGURE ll.-Graphical detennination of the steady-state tuna
population (T.J for the one-step kinetic model, when the natural
dissociation rate is greater than fishing mortality (see text).
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The model in the last section is somewhat un­
realistic in that the complex with y tuna schoob is
formed only ifthe y schools collide simultaneously
with an attractor. Hence, the modcl did not allow
for complexes with y - 1, y - 2, ... ,1 tuna school
per complex, A more realistic model is one in
which the tuna-attractor complexes form by a
multistep mechanism:

In the intermediate region f3 = bEXo it appears
that no simple biomass index is available.

The determination of the appropriate biomass
index depends upon the size of bExjf3. This is a
natural measure since it compares the rate at
which complexes are dissociated due to fishing
with the natural dissociation rate {3.

Multistep Collision Model

tB1?)

(818)T Y
0:: YIE

Thus, if j3 »bEXo we obtain

sketched in Figure 12. When Y~ 2, it is impossible
to overfish the tuna into extinction (compare Fig­
ure 12 with Figure 2, which corresponds to the
case Y = 1). The reason for this behavior is that, as
the tuna level decreases, the rate of formation of
complexes, nKT y' decreases much more rapidly
since Y ~ 2. When T is small, it is unlikely that a
complex will form. This result should be con­
trasted with the case of Y = 1, in which is it possi­
ble to overfish the tuna to extinction.

From Equation (B 10) we have

bXolcxKT'So
Y/E = (3 + bEXo

Thus (YIE) 1 Y is a possible biomass index, if j3 > >
bEXo·

If hEXo » j3, then

so that

T 0:: (YIE)ly. (BIg)
(B21)

'Y2 T + C1~C2

13T + C£:::;::::=C3

(B20)

In this limit a possible biomass index is (Y)! Y.

Thus, the catch itself is a biomass index.

bEXo /
C/ -- K + harvest of L I. schools

j = 1 J

where 1= 1, ... ,no

W
f-

<1 W
a:: f-

f- ~
Z
W I
::;: U
f- f­
- <1
::::> U
a::
u
W
a::

Ts

NUMBER OF CORE SCHOOLS (T)

More detail could be added, e.g., when a complex
C/ is fished,j=l, ... ,/ tuna schools might be rc­
moved with probabilities P Ij' When all Y/i = 1,
Equation (B21) is undoubtedly the most realistic
model presented here. (Since the probability that
two core schools are added at the same instant is
essentially zero, the idea of stepwise addition of
schools seems justified. )The kinetic equations cor­
responding to the reactions in Equation (B2l) are
(for Yj = 1 for all))

T = _T{CX1K+n~1 apj-l} + £ (3jCj +gT (T)
j=Z j=l

61 = a1KT-a~lCl + bEXoCl + a zC1T) + {3zCz

FIGURE 12.-Graphical determination of the steady-state tuna
population (Ts) for the one-step kinetic model, when fishing
mortality is greater than the natural dissociation rate (see text). (B22J
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K = -(XlKT + bEXo {~ Cj } + {3l Cl + gK (K).
j=l

Steady states of the system are obtained if we set
the left-hand sides in Equation (822) equal to zero.
We then find that the steady states are determined
by:

(B25)

(826)

(XlKT + {32C2

{3l + bEXo + (X2 T

(B23)

o

+ {32C2 - bEXoCl

62 = (X2C1T)2 -{32C2 -bEXoCz

In the steady state, we have

(827)

(B28)

o (X2 Cl T) 2

P2 + bEXo .
(B29)

Equations (822) and (823) seem to represent a
fairly realistic model of the fishery dynamics. A
full analysis of these equations would be quite
illuminating. However, as it is, the analysis ofthis
model quickly becomes intractable. In order to
illustrate the behavior of this model, we will
analyze the case II = 2 Ifor arbitrary "YI' "Y2 ):

, (Xl
K+l'lT~Cl

{3l

(X2
Cl + 1'2T~C2

(32

bEXo
Cl - K + harvest of 1'1 tons (824)

bEXo
C2 K + harvest of 1'1 + 1'2 tons.

The results ofthe analysis ofthree-ior higher)step
mechanisms should be similar to the analysis of
the two-step mechanism.

The multistep model provides a picture of the
tuna-porpoise bond which appears to be relatively
realistic. For example, we may imagine that the
first "Y, schools are bound strongly to the complex
(0:, large, (3, small) and that the next"Y2 schools are
bound less strongly (0:2 < 0:" (32 > (3,). Sharp's
(1978) discussion of the effect of the thermocline
on the tuna-porpoise association supports this
model. In particular, it seems likely that the O:i and
{3i depend upon the location of the thermocline.

The kinetic equations corresponding to the mul­
tistep model are

Adding the steady-state version of Equations
(825)-(828) gives

(830)

which we assume has the solution K = K .. > O. The
steady-state version of Equation (B27), using
Equation (829), is:

which can be solved to give the steady-state level
ofC, complexes:

IB31 )

The instantaneous harvest rate is given by:

(B32)

(B33)

335



FISHERY BULLETIN: VOL. 77, NO.2

Because !:J. and p are so complicated, Equation
(B39) is difficult to analyze as it stands. To
simplify the analysis, we assume that f31 == ~ = O.
Physically, this means that the rate ofdissociation
of complexes due to fishing is much greater than
the natural dissociation rate of complexes. Since
our major interest is in the qualitative behavior of
Equation (B39), this assumption seems acceptable.

If /31 == /32 == 0, Equation (839) becomes

Note that if we set f3 1 == f32 == 0 and 1'1 == 1'2 == 1,
Equation (833) becomes

bEXoSoO: 1KT
Y = bE T x (1 + 0:2T/ bEXo). (B34)

Xo + 0:2

With the exception of the multiplicative term (1 +
(X2T1bEXo), Equation (834) is equivalent to Equa­
tion (11) (model B) in the body of the paper. We
shall show that the model presented in this section
contains model B as a special case and also
exhibits "abrupt" transitions, between multiple
steady states.

As E .... 00, the harvest rate saturates and

gT=----- (B42)

(B35)

Hence, when E is large, (y)liY, is a biomass esti­
mate.

When E is small, Equation (B33) becomes

bEXoSO(XIKT" 1'20: 2
Y ~ (31 (1'1 +"1;- T'2 ), (B36)

which can be written as

(B37)

which can be analyzed. We denote by f(E, 'Y1''Y2,T)
the right-hand side of Equation (B42). The solu­
tions ofEquation (842) will be discussed according
to the values of 'YI and 'Y2' A complete analysis of
Equation (B42) is very involved. We shall present
a partial analysis, in order to illustrate the types of
behavior which may occur. We first consider the
case in which 11 == 1'2 == 1. Equation (B42) becomes

(B43)

Unlike the one-step model, in the multistep model
YIE is not a useful biomass estimate at any level of
effort.

The steady-state tuna level is determined from
the steady-state version of Equation (825). After
Equations (829) and (832) are used for the values
of C1 and C2 and the resulting expression is sim­
plified, we obtain

gT
T" K 6.(cx, (3, E, T)

(B39)(Xl p(cx, (3, E, T)

where b. = (1'1 + 1) U3t{32 + fhbEXo]

+ (1'2 -1)(32T '2

+ ~2bEXo + (bEXo) 2 (B40)

p = {31{32 (B4l)

+ bEXo(f3} +(32 +bEXo + Cl:2 T '2 ).
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bXoSoO: lKrl
where hI = -----, h2ill

. (B38) which is analogous to Equation (lIB) ofthe body of
the paper. Consequently, we shall not pursue the
analysis here. In the analysis of Equation (lIB),
we showed that Equation (B43) may have multiple
steady states. As effort increases, a transition be­
tween the steady state where the tuna level is high
and the steady state where T == 0 is possible if (XIK
> gT' (0) (the "catastrophe" condition).

In the one-step model, a complex containing two
tuna schools was formed only if the two schools, at
once, came into close contact with an attractor.
That model did not exhibit multiple steady states,
or even the possibility ofoverfishing the tuna into
extinction.

On the other hand, if the complex that contains
two schools is formed by a stepwise process, so that
schools are added to an attractor one at a time,
"catastrophic" behavior and extinction of the tuna
are possible.

Sudden transitions in population (catastrophes)
are usually difficult to predict. However, the
model presented here leads to a natural measure
of Qverfishing. From Equations (B29) and (B31),
when E is large we have
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Consequen tly, if overfishing is occurring, the
number of complexes with two tuna schools is
much less than the number of complexes with one
school. As effort increases further, the fishery will
find more and more attractors without any as­
sociated tuna schools. Such observations should
act as a warning that the tuna are being over­
exploited. We note that it is possible that CPUE
will not decrease, even though the number of tuna
schools per complex is decreasing (see Figure 7).

A host ofcomplex solutions and bifurcations can

(B44)
be determined ifthe values ofYI' Y2 are not 1. Since
Y\ > 1, Y2 > 1 do not have an immediately obvious
interpretation for fishery dynamics, we will not
consider those cases here.

In this Appendix, we have taken an approach to
modelling the fishery that is substantially dif­
ferent from the approach in the main part of the
paper. The results obtained here complement the
main results, and extend them. We have shown
that models A and B presented in the paper arise
as special cases of the kinetic models in this Ap­
pendix. It is clear that these models could be
greatly elaborated and many other details
explored.
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